Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Region-based classification of PolSAR data using radial basis kernel functions with stochastic distances

Texto completo
Autor(es):
Negri, Rogerio G. [1] ; Frery, Alejandro C. [2] ; Silva, Wagner B. [3] ; Mendes, Tatiana S. G. [1] ; Dutra, Luciano V. [4]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] UNESP Univ Estadual Paulista, ICT Inst Ciencia & Tecnol, Sao Jose Dos Campos - Brazil
[2] UFAL Univ Fed Alagoas, LaCCAN Lab Comp Cient & Anal Numer, Maceio, Alagoas - Brazil
[3] IME Inst Mil Engn, Secao Ensino Engn Cartog, Rio De Janeiro - Brazil
[4] INPE Inst Nacl Pesquisas Espaciais, DPI Div Proc Imagens, Sao Jose Dos Campos - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF DIGITAL EARTH; v. 12, n. 6, p. 699-719, 2019.
Citações Web of Science: 2
Resumo

Region-based classification of PolSAR data can be effectively performed by seeking for the assignment that minimizes a distance between prototypes and segments. Silva et al. {[}{''}Classification of segments in PolSAR imagery by minimum stochastic distances between wishart distributions.{''} IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (3): 1263-1273] used stochastic distances between complex multivariate Wishart models which, differently from other measures, are computationally tractable. In this work we assess the robustness of such approach with respect to errors in the training stage, and propose an extension that alleviates such problems. We introduce robustness in the process by incorporating a combination of radial basis kernel functions and stochastic distances with Support Vector Machines (SVM). We consider several stochastic distances between Wishart: Bhatacharyya, Kullback-Leibler, Chi-Square, Renyi, and Hellinger. We perform two case studies with PolSAR images, both simulated and from actual sensors, and different classification scenarios to compare the performance of Minimum Distance and SVM classification frameworks. With this, we model the situation of imperfect training samples. We show that SVM with the proposed kernel functions achieves better performance with respect to Minimum Distance, at the expense of more computational resources and the need of parameter tuning. Code and data are provided for reproducibility. (AU)

Processo FAPESP: 14/14830-8 - Estudo e desenvolvimento de novas funções Kernel com aplicações em classificação de imagens de sensoriamento remoto
Beneficiário:Rogério Galante Negri
Modalidade de apoio: Auxílio à Pesquisa - Regular