Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Image segmentation based on ultimate levelings: From attribute filters to machine learning strategies

Texto completo
Autor(es):
Alves, Wonder A. L. [1] ; Gobber, Charles F. [1] ; Silva, Dennis J. [2] ; Morimitsu, Alexandre [2] ; Hashimoto, Ronaldo F. [2] ; Marcotegui, Beatriz [3]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Nave Julho, Informat & Knowledge Management Grad Program, Sao Paulo - Brazil
[2] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Sao Paulo - Brazil
[3] Mines ParisTech, Ctr Math Morphol, Fontainebleau - France
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: PATTERN RECOGNITION LETTERS; v. 133, p. 264-271, MAY 2020.
Citações Web of Science: 0
Resumo

Ultimate levelings are operators that extract important image contrast information from a scale-space based on levelings. Along with the residual extraction process, some residues usually come from undesirable regions, and they should be filtered out. For this, some strategies can be applied to filter these undesirable residues. In this paper, we introduce a new approach to detect desirable regions from ultimate levelings through a new hierarchical structure called residual tree. From this structure, we extract attribute vectors to build a machine learning model which gives a matching value between ground truth regions and residual tree nodes. Thus, from the selected residual tree nodes, we present a new approach to choose the best disjoint residual nodes which gives the regions of the ultimate levelings. Finally, from the ultimate levelings, we use its partition associated function to solve the segmentation problem. In order to evaluate our new approach, some experiments were carried out with a plant dataset and results report the state-of-the-art performance in plant segmentation. (C) 2020 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 18/15652-7 - Segmentação de imagens baseada em restrições de formas por meio dos últimos levelings
Beneficiário:Wonder Alexandre Luz Alves
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/01587-0 - Armazenagem, modelagem e análise de sistemas dinâmicos para aplicações em e-Science
Beneficiário:João Eduardo Ferreira
Linha de fomento: Auxílio à Pesquisa - Programa eScience e Data Science - Temático