Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Binary Expression Enhances Reliability of Messaging in Gene Networks

Texto completo
Autor(es):
Gama, Leonardo R. [1, 2] ; Giovanini, Guilherme [3] ; Balazsi, Gabor [4, 5] ; Ramos, Alexandre F. [3, 1, 2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Radiol & Oncol, BR-05403911 Sao Paulo, SP - Brazil
[2] Univ Sao Paulo, Inst Canc Estado Sao Paulo, Fac Med, BR-05403911 Sao Paulo, SP - Brazil
[3] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Av Arlindo Bettio 1000, BR-03828000 Sao Paulo, SP - Brazil
[4] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 - USA
[5] SUNY Stony Brook, Louis & Beatrice Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 - USA
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: Entropy; v. 22, n. 4 APR 2020.
Citações Web of Science: 1
Resumo

The promoter state of a gene and its expression levels are modulated by the amounts of transcription factors interacting with its regulatory regions. Hence, one may interpret a gene network as a communicating system in which the state of the promoter of a gene (the source) is communicated by the amounts of transcription factors that it expresses (the message) to modulate the state of the promoter and expression levels of another gene (the receptor). The reliability of the gene network dynamics can be quantified by Shannon's entropy of the message and the mutual information between the message and the promoter state. Here we consider a stochastic model for a binary gene and use its exact steady state solutions to calculate the entropy and mutual information. We show that a slow switching promoter with long and equally standing ON and OFF states maximizes the mutual information and reduces entropy. That is a binary gene expression regime generating a high variance message governed by a bimodal probability distribution with peaks of the same height. Our results indicate that Shannon's theory can be a powerful framework for understanding how bursty gene expression conciliates with the striking spatio-temporal precision exhibited in pattern formation of developing organisms. (AU)

Processo FAPESP: 12/24962-3 - The first annual winter q-bio meeting
Beneficiário:Alexandre Ferreira Ramos
Modalidade de apoio: Auxílio à Pesquisa - Reunião - Exterior