Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Counting Cattle in UAV Images-Dealing with Clustered Animals and Animal/Background Contrast Changes

Texto completo
Autor(es):
Arnal Barbedo, Jayme Garcia [1] ; Koenigkan, Luciano Vieira [1] ; Santos, Patricia Menezes [2] ; Bueno Ribeiro, Andrea Roberto [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Embrapa Agr Informat, BR-13083886 Campinas - Brazil
[2] Embrapa Southeast Livestock, BR-13560970 Sao Carlos - Brazil
[3] Univ Santo Amaro, UNIP, UNISA, BR-04743030 Sao Paulo - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 20, n. 7 APR 2020.
Citações Web of Science: 1
Resumo

The management of livestock in extensive production systems may be challenging, especially in large areas. Using Unmanned Aerial Vehicles (UAVs) to collect images from the area of interest is quickly becoming a viable alternative, but suitable algorithms for extraction of relevant information from the images are still rare. This article proposes a method for counting cattle which combines a deep learning model for rough animal location, color space manipulation to increase contrast between animals and background, mathematical morphology to isolate the animals and infer the number of individuals in clustered groups, and image matching to take into account image overlap. Using Nelore and Canchim breeds as a case study, the proposed approach yields accuracies over 90% under a wide variety of conditions and backgrounds. (AU)

Processo FAPESP: 18/12845-9 - Detecção e contagem de gado usando veículos aéreos não tripulados
Beneficiário:Jayme Garcia Arnal Barbedo
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Regular