Texto completo | |
Autor(es): |
Número total de Autores: 3
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Dept Math, BR-05508090 Sao Paulo, SP - Brazil
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | ALGEBRAS AND REPRESENTATION THEORY; v. 23, n. 3, p. 605-619, JUN 2020. |
Citações Web of Science: | 0 |
Resumo | |
Let k be a field of characteristic different from 2 and let G be a nonabelian residually torsion-free nilpotent group. It is known that G is an orderable group. Let k(G) denote the subdivision ring of the Malcev-Neumann series ring generated by the group algebra of G over k. If {*} is an involution on G, then it extends to a unique k-involution on k(G). We show that k(G) contains pairs of symmetric elements with respect to {*} which generate a free group inside the multiplicative group of k(G). Free unitary pairs also exist if G is torsion-free nilpotent. Finally, we consider the general case of a division ring D, with a k-involution {*}, containing a normal subgroup N in its multiplicative group, such that G subset of N, with G a nilpotent-by-finite torsion-free subgroup that is not abelian-by-finite, satisfying G{*} = G and N{*} = N. We prove that N contains a free symmetric pair. (AU) | |
Processo FAPESP: | 15/09162-9 - Álgebra não comutativa e aplicações |
Beneficiário: | Francisco Cesar Polcino Milies |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |