Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Second Homotopy Group and Invariant Geometry of Flag Manifolds

Texto completo
Autor(es):
Grama, Lino [1] ; Seco, Lucas [2, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas SP, UNICAMP, Dept Matemat, Campinas, SP - Brazil
[2] UnB Univ Fed Brasilia DF, Dept Matemat, Brasilia, DF, Brazil.Grama, Lino, Univ Estadual Campinas SP, UNICAMP, Dept Matemat, Campinas, SP - Brazil
[3] UnB Univ Fed Brasilia DF, Dept Matemat, Brasilia, DF - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Results in Mathematics; v. 75, n. 3 JUN 3 2020.
Citações Web of Science: 0
Resumo

We use the Hopf fibration to explicitly compute generators of the second homotopy group of the flag manifolds of a compact Lie group. We show that these 2-spheres have nice geometrical properties such as being totally geodesic surfaces with respect to any invariant metric on the flag manifold, generalizing a result in Burstall and Rawnsley (Springer Lect. Notes Math. 2(84):1424, 1990). This illustrates how ``rubber-band{''} topology can, in the presence of symmetry, single out very rigid objects. We characterize when these 2-spheres in the same homotopy class have the same geometry for all invariant metrics. This is done by exploring the action of Weyl group of the flag manifold, generalizing results of Patrao and San Martin (Indag. Math. 26:547-579, 2015) and de Siebenthal (Math. Helvetici 44(1):1-3, 1969). This illustrates how some aspects of ``continuum{''} invariant geometry can, in the presence of symmetry, be reduced to the study of discrete objects. We remark that the topology singling out very rigid objects and the study of a continuum object being reduced to discrete ones is a characteristic of situations with a lot of symmetry and, thus, are recurring themes in Lie theory. (AU)

Processo FAPESP: 18/13481-0 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos
Beneficiário:Marco Antônio Teixeira
Modalidade de apoio: Auxílio à Pesquisa - Temático