Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A mathematical model for the coverage location problem with overlap control

Texto completo
Autor(es):
Araujo, Eliseu J. ; Chaves, Antonio A. [1] ; Lorena, Luiz A. N.
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Sao Paulo, Sao Jose Dos Campos - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: COMPUTERS & INDUSTRIAL ENGINEERING; v. 146, AUG 2020.
Citações Web of Science: 0
Resumo

The Coverage Location Problem (CLP) seeks the best locations for service to minimize the total number of facilities required to meet all demands. This paper studies a new variation of this problem, called the Coverage Location Problem with Overlap Control (CLPOC). This problem models real contexts related to overloaded attendance systems, which require coverage zones with overlaps. Thus, each demand must be covered by a certain number of additional facilities to ensure that demands will be met even when the designated facility is unable to due to some facility issue. This feature is important in public and emergency services. We observe that this number of additional facilities is excessive in some demand points because overlaps among coverage zones occur naturally in CLP. The goal of the CLPOC is to control overlaps to prioritize regions with a high density population or to minimize the number of coverage zones for each demand point. In this paper, we propose a new mathematical model for the CLPOC that controls the overlap between coverage zones. We used a commercial solver to find the optimal solutions for available instances in the literature. The computational tests show that the proposed mathematical model found appropriate solutions in terms of number of demand points with minimum coverage zones and sufficient coverage zones for high demand points. (AU)

Processo FAPESP: 18/15417-8 - Desenvolvimento de uma meta-heurística híbrida com fluxo de controle e parâmetros adaptativos
Beneficiário:Antônio Augusto Chaves
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores - Fase 2
Processo FAPESP: 16/01860-1 - Problemas de corte, empacotamento, dimensionamento de lotes, programação da produção, roteamento, localização e suas integrações em contextos industriais e logísticos
Beneficiário:Reinaldo Morabito Neto
Modalidade de apoio: Auxílio à Pesquisa - Temático