Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain and soil atributes

Texto completo
Autor(es):
Nascimento, Claudia Maria [1] ; Mendes, Wanderson de Sousa [1] ; Quinonez Silvero, Nelida Elizabet [1] ; Poppiel, Raill Roberto [1] ; Sayao, Veridiana Maria [1] ; Dotto, Andre Carnieletto [1] ; dos Santos, Natasha Valadares [1] ; Accorsi Amorim, Merilyn Taynara [1] ; Dematte, Jose A. M. [1]
Número total de Autores: 9
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Coll Agr Luiz de Queiroz, Dept Soil Sci, Padua Dias Ave 11, CP 9, BR-13418900 Piracicaba, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Environmental Management; v. 277, JAN 1 2021.
Citações Web of Science: 0
Resumo

Studies on soil degradation are essential for environmental preservation. Since almost 30% of the global soils are degraded, it is important to study and map them for improving their management and use. We aimed to obtain a Soil Degradation Index (SDI) based on multi-temporal satellite images associated with climate variables, land use, terrain and soil attributes. The study was conducted in a 2598 km(2) area in Sao Paulo State, Brazil, where 1562 soil samples (0-20 cm) were collected and analyzed by conventional methods. Spatial predictions of soil attributes such as clay, cation exchange capacity (CEC) and soil organic matter (OM) were performed using machine learning algorithms. A collection of 35-year Landsat images was used to obtain a multi-temporal bare soil image, whose spectral bands were used as soil attributes predictors. The maps of clay, CEC, climate variables, terrain attributes and land use were overlaid and the K-means clustering algorithm was applied to obtain five groups, which represented levels of soil degradation (classes from 1 to 5 representing very low to very high soil degradation). The SDI was validated using the predicted map of OM. The highest degradation level obtained in 15% of the area had the lowest OM content. Levels 1 and 4 of SDI were the most representative covering 24% and 23% of the area, respectively. Therefore, satellite images combined with environmental information significantly contributed to the SDI development, which supports decision-making on land use planning and management. (AU)

Processo FAPESP: 16/26124-6 - Pedologia de precisão: caracterização e mapeamento de solos em tempo real por geotecnologias
Beneficiário:Wanderson de Sousa Mendes
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 18/09656-0 - Relação entre degradação do solo e classes de solo avaliados por imagens Landsat (Vis-Nir-Swir-Tir) durante 27 anos, derivado do clima e modelo digital de elevação, de modo a auxiliar no mapeamento digital de solos
Beneficiário:Claudia Maria Nascimento
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 14/22262-0 - Geotecnologias no mapeamento digital pedológico detalhado e biblioteca espectral de solos do Brasil: desenvolvimento e aplicações
Beneficiário:José Alexandre Melo Demattê
Modalidade de apoio: Auxílio à Pesquisa - Temático