Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Generative Adversarial Networks in Human Emotion Synthesis: A Review

Texto completo
Autor(es):
Hajarolasvadi, Noushin [1] ; Ramirez, Miguel Arjona [2] ; Beccaro, Wesley [2] ; Demirel, Hasan [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Eastern Mediterranean Univ, Elect & Elect Engn Dept, TR-99628 Gazimagusa - Turkey
[2] Univ Sao Paulo, Dept Elect Syst Engn, BR-05508010 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo de Revisão
Fonte: IEEE ACCESS; v. 8, p. 218499-218529, 2020.
Citações Web of Science: 0
Resumo

Deep generative models have become an emerging topic in various research areas like computer vision and signal processing. These models allow synthesizing realistic data samples that are of great value for both academic and industrial communities. Affective computing, a topic of a broad interest in computer vision society, has been no exception and has benefited from this powerful approach. In fact, affective computing observed a rapid derivation of generative models during the last two decades. Applications of such models include but are not limited to emotion recognition and classification, unimodal emotion synthesis, and cross-modal emotion synthesis. As a result, we conducted a comprehensive survey of recent advances in human emotion synthesis by studying available databases, advantages, and disadvantages of the generative models along with the related training strategies considering two principal human communication modalities, namely audio and video. In this context, facial expression synthesis, speech emotion synthesis, and the audio-visual (cross-modal) emotion synthesis are reviewed extensively under different application scenarios. Gradually, we discuss open research problems to push the boundaries of this research area for future works. As conclusions, we indicate common problems that can be explored from the Generative Adversarial Networks (GAN) topologies and applications in emotion synthesis. (AU)

Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 18/12579-7 - Tecnologias habilitadores para a Internet das Coisas
Beneficiário:Vitor Heloiz Nascimento
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/26455-8 - Processamento Audiovisual de Voz por Aprendizagem de Máquina
Beneficiário:Miguel Arjona Ramírez
Modalidade de apoio: Auxílio à Pesquisa - Regular