Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

When control and state variations increase uncertainty: Modeling and stochastic control in discrete time

Texto completo
Autor(es):
Pedrosa, Filipe C. [1] ; Nereu, Joao C. [1] ; do Val, Joao B. R. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] UNICAMP Univ Campinas, Sch Elect & Comp Engn, BR-13083852 Campinas - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: AUTOMATICA; v. 123, JAN 2021.
Citações Web of Science: 0
Resumo

This paper deals with the paradigm of controlling uncertain stochastic systems for which control and state variations increase uncertainty (CSVIU). The discrete time CSVIU model is particularly useful when an accurate dynamic model is unattainable, and only a rough model is available. Interesting features arise from the optimal control solution for the model. In particular, the optimal control action is to remain idle within a certain region of the state space - the inaction region. This feature, peculiar to the CSVIU approach, has ties to cautionary control policies found in economics. The convexity of the cost function holds for the discounted control problem with quadratic costs when the noise is Gaussian, and the control policy admits a solution in closed form in some regions of the state space. A linearly perturbed Lyapunov equation inside the inaction region, and a rational Riccati equation, asymptotically in far-off regions, characterize the control. We show the stochastic stability of solutions and provide numerical experiments that underline CSVIU model control's interesting peculiarities. (c) 2020 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 16/08645-9 - Pesquisas interdisciplinares em redes inteligentes de energia elétrica
Beneficiário:João Bosco Ribeiro do Val
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 16/13508-0 - Modelagem e controle de sistemas estocásticos discretos com dinâmica pouco conhecida
Beneficiário:Filipe de Carvalho Pedrosa
Modalidade de apoio: Bolsas no Brasil - Mestrado