Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the Hamilton's isoperimetric ratio in complete Riemannian manifolds of finite volume

Texto completo
Autor(es):
Nardulli, Stefano [1] ; Russo, Francesco G. [2, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Fed ABC, Ctr Matemat Comp & Cognicao, Santo Andre, SP - Brazil
[2] Univ Cape Town, Dept Math & Appl Math, Private Bag X1, ZA-7701 Cape Town - South Africa
[3] Univ Western Cape, Dept Math & Appl Math, ZA-7535 Bellville - South Africa
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF FUNCTIONAL ANALYSIS; v. 280, n. 4 FEB 15 2021.
Citações Web of Science: 0
Resumo

We study a family of geometric variational functionals introduced by Hamilton, and considered later by Daskalopulos, Sesum, Del Pino and Hsu, in order to understand the behavior of maximal solutions of the Ricci flow both in compact and noncompact complete Riemannian manifolds of finite volume. The case of dimension two has some peculiarities, which force us to use different ideas from the corresponding higher-dimensional case. Under some natural restrictions, we investigate sufficient and necessary conditions which allow us to show the existence of connected regions with a connected complementary set (the so-called ``separating regions{''}). In dimension higher than two, the associated problem of minimization is reduced to an auxiliary problem for the isoperimetric profile (with the corresponding investigation of the minimizers). This is possible via an argument of compactness in geometric measure theory valid for the case of complete finite volume manifolds. Moreover, we show that the minimum of the separating variational problem is achieved by an isoperimetric region. The dimension two requires different techniques of proof. The present results develop a definitive theory, which allows us to circumvent the shortening curve flow approach of the above mentioned authors at the cost of some applications of the geometric measure theory and of the Ascoli-Arzela's Theorem. (C) 2020 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 18/22938-4 - Regularidade ao bordo para correntes que minimizam a área
Beneficiário:Stefano Nardulli
Modalidade de apoio: Bolsas no Exterior - Pesquisa