Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Social contagion models on hypergraphs

Texto completo
Autor(es):
de Arruda, Guilherme Ferraz [1] ; Petri, Giovanni [1] ; Moreno, Yamir [2, 3, 1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] ISI Fdn, Via Chisola 5, I-10126 Turin - Italy
[2] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, Zaragoza 50018 - Spain
[3] Univ Zaragoza, Dept Theoret Phys, Zaragoza 50018 - Spain
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW RESEARCH; v. 2, n. 2 APR 10 2020.
Citações Web of Science: 4
Resumo

Our understanding of the dynamics of complex networked systems has increased significantly in the last two decades. However, most of our knowledge is built upon assuming pairwise relations among the system's components. This is often an oversimplification, for instance, in social interactions that occur frequently within groups. To overcome this limitation, here we study the dynamics of social contagion on hypergraphs. We develop an analytical framework and provide numerical results for arbitrary hypergraphs, which we also support with Monte Carlo simulations. Our analyses show that the model has a vast parameter space, with first- and second-order transitions, bistability, and hysteresis. Phenomenologically, we also extend the concept of latent heat to social contexts, which might help understanding oscillatory social behaviors. Our work unfolds the research line of higher-order models and the analytical treatment of hypergraphs, posing new questions and paving the way for modeling dynamical processes on higher-order structures. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs