Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Effective and unburdensome forecast of highway traffic flow with adaptive computing

Texto completo
Autor(es):
Alves, Matheus A. C. [1] ; Cordeiro, Robson L. F. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: KNOWLEDGE-BASED SYSTEMS; v. 212, JAN 5 2021.
Citações Web of Science: 0
Resumo

Given traffic flow measurements for one highway, how to forecast its flow in future periods? Recent works in traffic forecast propose burdensome procedures by depending on additional data that is not always available, like traffic measurements from other roads linked to the one of interest, social media, trajectory and car accident data, geographical and socio-demographic attributes, driver behavior information and weather forecast. The most accurate algorithms force anyone to monitor an entire network of highways, even when there is a single highway of interest. This procedure is commonly unaffordable. How to obtain highly accurate results without using any additional data? We answer the question with AdaptFlow: a novel, adaptive algorithm able to accurately forecast traffic flow by individually monitoring highways that are connected to each other in a complex network using local flow measurements only. We performed experiments on large datasets from highways in UK and USA. Our AdaptFlow notably outperformed well-known related works on many settings. For example, it achieved 95.5% accuracy on average when forecasting the next 15 minutes flow of the UK highways, leading to an error rate that is 36% smaller than the one of the most accurate related work that does not use additional data. (C) 2020 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 20/07200-9 - Analisando dados complexos vinculados a COVID-19 para apoio à tomada de decisão e prognóstico
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/05714-5 - Mineração de Fluxos de Dados Frequentes e de Alta Dimensionalidade: estudo de caso em jogos digitais
Beneficiário:Robson Leonardo Ferreira Cordeiro
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/17078-0 - Mineração, indexação e visualização de Big Data no contexto de sistemas de apoio à decisão clínica (MIVisBD)
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Temático