Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Recognizing Context-Aware Human Sociability Patterns Using Pervasive Monitoring for Supporting Mental Health Professionals

Texto completo
Autor(es):
de Moura, Ivan Rodrigues [1] ; Teles, Ariel Soares [1, 2] ; Endler, Markus [3] ; Coutinho, Luciano Reis [1] ; Silva, Francisco Jose da Silva e [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Fed Maranhao, Lab Intelligent Distributed Syst LSDi, BR-65080805 Sao Luis, Maranhao - Brazil
[2] Fed Inst Maranhao, BR-65570000 Araioses - Brazil
[3] Pontifical Catholic Univ Rio De Janeiro, Dept Informat, BR-22453900 Rio De Janeiro - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 21, n. 1 JAN 2021.
Citações Web of Science: 0
Resumo

Traditionally, mental health specialists monitor their patients' social behavior by applying subjective self-report questionnaires in face-to-face meetings. Usually, the application of the self-report questionnaire is limited by cognitive biases (e.g., memory bias and social desirability). As an alternative, we present a solution to detect context-aware sociability patterns and behavioral changes based on social situations inferred from ubiquitous device data. This solution does not focus on the diagnosis of mental states, but works on identifying situations of interest to specialized professionals. The proposed solution consists of an algorithm based on frequent pattern mining and complex event processing to detect periods of the day in which the individual usually socializes. Social routine recognition is performed under different context conditions to differentiate abnormal social behaviors from the variation of usual social habits. The proposed solution also can detect abnormal behavior and routine changes. This solution uses fuzzy logic to model the knowledge of the mental health specialist necessary to identify the occurrence of behavioral change. Evaluation results show that the prediction performance of the identified context-aware sociability patterns has strong positive relation (Pearson's correlation coefficient >70%) with individuals' social routine. Finally, the evaluation conducted recognized that the proposed solution leading to the identification of abnormal social behaviors and social routine changes consistently. (AU)

Processo FAPESP: 15/24485-9 - Internet do futuro aplicada a cidades inteligentes
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 14/50937-1 - INCT 2014: da Internet do Futuro
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático