Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Enhanced Routing Algorithm Based on Reinforcement Machine Learning-A Case of VoIP Service

Texto completo
Autor(es):
Militani, Davi Ribeiro [1] ; de Moraes, Hermes Pimenta [1] ; Rosa, Renata Lopes [1] ; Wuttisittikulkij, Lunchakorn [2] ; Ramirez, Miguel Arjona [3] ; Rodriguez, Demostenes Zegarra [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Fed Lavras, Dept Comp Sci, BR-37200000 Lavras, MG - Brazil
[2] Chulalongkorn Univ, Dept Elect Engn, Wireless Commun Ecosyst Res Unit, Bangkok 10330 - Thailand
[3] Univ Sao Paulo, Dept Elect Syst Engn, BR-05508010 Sao Paulo - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 21, n. 2 JAN 2021.
Citações Web of Science: 0
Resumo

The routing algorithm is one of the main factors that directly impact on network performance. However, conventional routing algorithms do not consider the network data history, for instances, overloaded paths or equipment faults. It is expected that routing algorithms based on machine learning present advantages using that network data. Nevertheless, in a routing algorithm based on reinforcement learning (RL) technique, additional control message headers could be required. In this context, this research presents an enhanced routing protocol based on RL, named e-RLRP, in which the overhead is reduced. Specifically, a dynamic adjustment in the Hello message interval is implemented to compensate the overhead generated by the use of RL. Different network scenarios with variable number of nodes, routes, traffic flows and degree of mobility are implemented, in which network parameters, such as packet loss, delay, throughput and overhead are obtained. Additionally, a Voice-over-IP (VoIP) communication scenario is implemented, in which the E-model algorithm is used to predict the communication quality. For performance comparison, the OLSR, BATMAN and RLRP protocols are used. Experimental results show that the e-RLRP reduces network overhead compared to RLRP, and overcomes in most cases all of these protocols, considering both network parameters and VoIP quality. (AU)

Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 18/26455-8 - Processamento Audiovisual de Voz por Aprendizagem de Máquina
Beneficiário:Miguel Arjona Ramírez
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/12579-7 - Tecnologias habilitadores para a Internet das Coisas
Beneficiário:Vitor Heloiz Nascimento
Modalidade de apoio: Auxílio à Pesquisa - Temático