Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors

Texto completo
Autor(es):
Ranieri, Caetano Mazzoni [1] ; MacLeod, Scott [2] ; Dragone, Mauro [2] ; Vargas, Patricia Amancio [2] ; Romero, Roseli Aparecida Francelin [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP - Brazil
[2] Heriot Watt Univ, Edinburgh Ctr Robot, Edinburgh EH14 4AS, Midlothian - Scotland
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 21, n. 3 FEB 2021.
Citações Web of Science: 0
Resumo

Worldwide demographic projections point to a progressively older population. This fact has fostered research on Ambient Assisted Living, which includes developments on smart homes and social robots. To endow such environments with truly autonomous behaviours, algorithms must extract semantically meaningful information from whichever sensor data is available. Human activity recognition is one of the most active fields of research within this context. Proposed approaches vary according to the input modality and the environments considered. Different from others, this paper addresses the problem of recognising heterogeneous activities of daily living centred in home environments considering simultaneously data from videos, wearable IMUs and ambient sensors. For this, two contributions are presented. The first is the creation of the Heriot-Watt University/University of Sao Paulo (HWU-USP) activities dataset, which was recorded at the Robotic Assisted Living Testbed at Heriot-Watt University. This dataset differs from other multimodal datasets due to the fact that it consists of daily living activities with either periodical patterns or long-term dependencies, which are captured in a very rich and heterogeneous sensing environment. In particular, this dataset combines data from a humanoid robot's RGBD (RGB + depth) camera, with inertial sensors from wearable devices, and ambient sensors from a smart home. The second contribution is the proposal of a Deep Learning (DL) framework, which provides multimodal activity recognition based on videos, inertial sensors and ambient sensors from the smart home, on their own or fused to each other. The classification DL framework has also validated on our dataset and on the University of Texas at Dallas Multimodal Human Activities Dataset (UTD-MHAD), a widely used benchmark for activity recognition based on videos and inertial sensors, providing a comparative analysis between the results on the two datasets considered. Results demonstrate that the introduction of data from ambient sensors expressively improved the accuracy results. (AU)

Processo FAPESP: 17/02377-5 - Aprendizado de Máquina e Aplicações para Robótica em Ambientes Inteligentes
Beneficiário:Caetano Mazzoni Ranieri
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 18/25902-0 - Aprendizado de máquina para ajudar a encontrar correlatos neurais do Mal de Parkinson
Beneficiário:Caetano Mazzoni Ranieri
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 17/01687-0 - Arquitetura e aplicações para robótica em ambientes inteligentes
Beneficiário:Roseli Aparecida Francelin Romero
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs