Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the prediction of long-lived bugs: An analysis and comparative study using FLOSS projects

Texto completo
Autor(es):
Ferreira Gomes, Luiz Alberto [1, 2] ; Torres, Ricardo da Silva [3] ; Cortes, Mario Lucio [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp IC, UNICAMP, Campinas, SP - Brazil
[2] Pontifical Catholic Univ Minas Gerais PUC MG, Inst Exact Sci & Informat ICEI, Belo Horizonte, MG - Brazil
[3] Norwegian Univ Sci & Technol NTNU, Dept ICT & Nat Sci, Trondheim - Norway
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: INFORMATION AND SOFTWARE TECHNOLOGY; v. 132, APR 2021.
Citações Web of Science: 0
Resumo

Context: Software evolution and maintenance activities in today's Free/Libre Open Source Software (FLOSS) rely primarily on information extracted from bug reports registered in bug tracking systems. Many studies point out that most bugs that adversely affect the user's experience across versions of FLOSS projects are longlived bugs. However, proposed approaches that support bug fixing procedures do not consider the real-world lifecycle of a bug, in which bugs are often fixed very fast. This may lead to useless efforts to automate the bug management process. Objective: This study aims to confirm whether the number of long-lived bugs is significantly high in popular open-source projects and to characterize the population of long-lived bugs by considering the attributes of bug reports. We also aim to conduct a comparative study evaluating the prediction accuracy of five well-known machine learning algorithms and text mining techniques in the task of predicting long-lived bugs. Methods: We collected bug reports from six popular open-source projects repositories (Eclipse, Freedesktop, Gnome, GCC, Mozilla, and WineHQ) and used the following machine learning algorithms to predict long-lived bugs: K-Nearest Neighbor, Naive Bayes, Neural Networks, Random Forest, and Support Vector Machines. Results: Our results show that long-lived bugs are relatively frequent (varying from 7.2% to 40.7%) and have unique characteristics, confirming the need to study solutions to support bug fixing management. We found that the Neural Network classifier yielded the best results in comparison to the other algorithms evaluated. Conclusion: Research efforts regarding long-lived bugs are needed and our results demonstrate that it is possible to predict long-lived bugs with a high accuracy (around 70.7%) despite the use of simple prediction algorithms and text mining methods. (AU)

Processo FAPESP: 14/50715-9 - Characterizing and predicting biomass production in sugarcane and eucalyptus plantations in Brazil
Beneficiário:Rubens Augusto Camargo Lamparelli
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 16/50250-1 - O segredo de jogar futebol: Brasil versus Holanda
Beneficiário:Sergio Augusto Cunha
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/20945-0 - EMU concedido no processo 16/50250-1: local positioning system
Beneficiário:Sergio Augusto Cunha
Modalidade de apoio: Auxílio à Pesquisa - Programa Equipamentos Multiusuários
Processo FAPESP: 13/50155-0 - Combining new technologies to monitor phenology from leaves to ecosystems
Beneficiário:Leonor Patricia Cerdeira Morellato
Modalidade de apoio: Auxílio à Pesquisa - Programa de Pesquisa sobre Mudanças Climáticas Globais - PITE