Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Analysis of activation maps through global pooling measurements for texture classification

Texto completo
Autor(es):
Condori, Rayner H. M. [1, 2] ; Bruno, Odemir M. [1, 2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Sao Paulo, Sao Carlos Inst Phys, Sci Comp Grp, POB 369, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: INFORMATION SCIENCES; v. 555, p. 260-279, MAY 2021.
Citações Web of Science: 1
Resumo

We analyzed the effects of global pooling measurements on extracting relevant texture information from a given set of activation maps. Initially, using a layer-by-layer approach (GP-CNN), we experimentally demonstrated that layers at various depth levels could provide high-quality texture information. Based on this finding, we developed RANKGP-CNN, a method that performs multi-layer feature extraction. More specifically, RANKGP-CNN treats every CNN model as a vast collection of deep composite functions, where each function computes a 2D activation map for every input image. A feature ranking approach then assigns a score to each deep composite function by processing the activation maps generated for a particular dataset bank. Eventually, RauxGP-CNN uses the top-ranked deep composite functions to compute feature vectors for different texture datasets. Experiments on a dedicated classifier showed that RauxGP-CNN achieves good results and can adapt to different texture problems. Finally, we present RauxGP-3M-CNN as the version of RANKGP-CNN that considers multiple CNN models. Overall, RaNKGP-3M-CNN achieves promising results with the advantage of only using the default scale of the input images. (C) 2020 Published by Elsevier Inc. (AU)

Processo FAPESP: 16/18809-9 - Deep learning e redes complexas aplicados em visão computacional
Beneficiário:Odemir Martinez Bruno
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 14/08026-1 - Visão artificial e reconhecimento de padrões aplicados em plasticidade vegetal
Beneficiário:Odemir Martinez Bruno
Modalidade de apoio: Auxílio à Pesquisa - Regular