Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Brain age prediction: A comparison between machine learning models using region- and voxel-based morphometric data

Texto completo
Baecker, Lea [1] ; Dafflon, Jessica [2] ; da Costa, Pedro F. [2] ; Garcia-Dias, Rafael [1] ; Vieira, Sandra [1] ; Scarpazza, Cristina [1, 3] ; Calhoun, Vince D. [4, 5] ; Sato, Joao R. [6] ; Mechelli, Andrea [1] ; Pinaya, Walter H. L. [6, 1, 7]
Número total de Autores: 10
Afiliação do(s) autor(es):
[1] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Psychosis Studies, London - England
[2] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Neuroimaging, London - England
[3] Univ Padua, Dept Gen Psychol, Padua - Italy
[4] Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 - USA
[5] Emory Univ, Georgia Inst Technol, Atlanta, GA 30322 - USA
[6] Univ Fed ABC, Ctr Math Comp & Cognit, Sao Paulo - Brazil
[7] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Biomed Engn, London - England
Número total de Afiliações: 7
Tipo de documento: Artigo Científico
Fonte: Human Brain Mapping; v. 42, n. 8 MAR 2021.
Citações Web of Science: 1

Brain morphology varies across the ageing trajectory and the prediction of a person's age using brain features can aid the detection of abnormalities in the ageing process. Existing studies on such ``brain age prediction{''} vary widely in terms of their methods and type of data, so at present the most accurate and generalisable methodological approach is unclear. Therefore, we used the UK Biobank data set (N = 10,824, age range 47-73) to compare the performance of the machine learning models support vector regression, relevance vector regression and Gaussian process regression on whole-brain region-based or voxel-based structural magnetic resonance imaging data with or without dimensionality reduction through principal component analysis. Performance was assessed in the validation set through cross-validation as well as an independent test set. The models achieved mean absolute errors between 3.7 and 4.7 years, with those trained on voxel-level data with principal component analysis performing best. Overall, we observed little difference in performance between models trained on the same data type, indicating that the type of input data had greater impact on performance than model choice. All code is provided online in the hope that this will aid future research. (AU)

Processo FAPESP: 18/04654-9 - Séries temporais, ondaletas e dados de alta dimensão
Beneficiário:Pedro Alberto Morettin
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/21934-5 - Estatística de redes: teoria, métodos e aplicações
Beneficiário:André Fujita
Linha de fomento: Auxílio à Pesquisa - Temático