Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Existence of periodic solutions and bifurcation points for generalized ordinary differential equations

Texto completo
Autor(es):
Federson, M. [1] ; Mawhin, J. [2] ; Mesquita, C. [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Campus Sao Carlos, Caixa Postal 668, BR-13560970 Sao Carlos, SP - Brazil
[2] Catholic Univ Louvain, Res Inst Math & Phys, B-1348 Louvain La Neuve - Belgium
[3] Univ Fed Sao Carlos, Caixa Postal 676, BR-13565905 Sao Carlos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: BULLETIN DES SCIENCES MATHEMATIQUES; v. 169, JUL 2021.
Citações Web of Science: 1
Resumo

The generalized ordinary differential equations (shortly GODEs), introduced by J. Kurzweil in 1957, encompass other types of equations. The first main result of this paper extends to GODEs some classical conditions on the existence of a periodic solution of a nonautonomous ODE. By means of the correspondence between impulse differential equations (shortly IDEs) and GODEs, we translate the result to IDEs. Instead of the classical hypotheses that the functions on the righthand side of an IDE are piecewise continuous, it is enough to require that they are integrable in the sense of Lebesgue, allowing such functions to have many discontinuities. Our second main result provides conditions for the existence of a bifurcation point with respect to the trivial solution of a periodic boundary value problem for a GODE depending upon a parameter, and, again, we apply such result to IDEs. The machinery employed to obtain the main results are the topological degree theory, tools from the theory of compact operators and an Arzela-Ascoli-type theorem for regulated functions. (C) 2021 Elsevier Masson SAS. All rights reserved. (AU)

Processo FAPESP: 17/13795-2 - Integração Não Absoluta e Aplicações
Beneficiário:Márcia Cristina Anderson Braz Federson
Linha de fomento: Auxílio à Pesquisa - Regular