Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Coherence resonance in influencer networks

Texto completo
Autor(es):
Toenjes, Ralf [1] ; Fiore, Carlos E. [2] ; Pereira, Tiago [3, 4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24, D-14476 Potsdam - Germany
[2] Univ Sao Paulo, Inst Fis, Sao Paulo - Brazil
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Sao Carlos, SP - Brazil
[4] Imperial Coll London, Dept Math, London SW7 2AZ - England
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: NATURE COMMUNICATIONS; v. 12, n. 1 JAN 4 2021.
Citações Web of Science: 1
Resumo

Complex networks are abundant in nature and many share an important structural property: they contain a few nodes that are abnormally highly connected (hubs). Some of these hubs are called influencers because they couple strongly to the network and play fundamental dynamical and structural roles. Strikingly, despite the abundance of networks with influencers, little is known about their response to stochastic forcing. Here, for oscillatory dynamics on influencer networks, we show that subjecting influencers to an optimal intensity of noise can result in enhanced network synchronization. This new network dynamical effect, which we call coherence resonance in influencer networks, emerges from a synergy between network structure and stochasticity and is highly nonlinear, vanishing when the noise is too weak or too strong. Our results reveal that the influencer backbone can sharply increase the dynamical response in complex systems of coupled oscillators. Influencer networks include a small set of highly-connected nodes and can reach synchrony only via strong node interaction. Tonjes et al. show that introducing an optimal amount of noise enhances synchronization of such networks, which may be relevant for neuroscience or opinion dynamics applications. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 15/04451-2 - Transições de fase: métodos e processos com estados absorventes
Beneficiário:Carlos Eduardo Fiore dos Santos
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/50122-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Modalidade de apoio: Auxílio à Pesquisa - Temático