Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Weighted Lindley frailty model: estimation and application to lung cancer data

Texto completo
Autor(es):
Mota, Alex [1, 2, 3] ; Milani, Eder A. [3] ; Calsavara, Vinicius F. [4, 5] ; Tomazella, Vera L. D. [2] ; Leao, Jeremias [6] ; Ramos, Pedro L. [7] ; Ferreira, Paulo H. [8] ; Louzada, Francisco [1]
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP - Brazil
[2] Univ Fed Sao Carlos, Dept Stat, BR-13565905 Sao Carlos, SP - Brazil
[3] Univ Fed Goias, Inst Math & Stat, BR-74690900 Goiania, Go - Brazil
[4] AC Camargo Canc Ctr, Dept Epidemiol & Stat, BR-01508010 Sao Paulo, SP - Brazil
[5] Cedars Sinai Med Ctr, Biostat & Bioinformat Res Ctr, Los Angeles, CA 90048 - USA
[6] Univ Fed Amazonas, Dept Stat, BR-69067005 Manaus, Amazonas - Brazil
[7] Pontificia Univ Catolica Chile, Fac Matemat, Santiago 7820436 - Chile
[8] Univ Fed Bahia, Dept Stat, BR-40170110 Salvador, BA - Brazil
Número total de Afiliações: 8
Tipo de documento: Artigo Científico
Fonte: LIFETIME DATA ANALYSIS; JUL 2021.
Citações Web of Science: 0
Resumo

In this paper, we propose a novel frailty model for modeling unobserved heterogeneity present in survival data. Our model is derived by using a weighted Lindley distribution as the frailty distribution. The respective frailty distribution has a simple Laplace transform function which is useful to obtain marginal survival and hazard functions. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions. A classical inference procedure based on the maximum likelihood method is presented. Extensive simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Finally, to demonstrate the applicability of the proposed model, we use it to analyze a medical dataset from a population-based study of incident cases of lung cancer diagnosed in the state of Sao Paulo, Brazil. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs