Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Harnessing high-level concepts, visual, and auditory features for violence detection in videos

Texto completo
Autor(es):
Peixoto, Bruno M. [1] ; Lavi, Bahram [1] ; Dias, Zanoni [1] ; Rocha, Anderson [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION; v. 78, JUL 2021.
Citações Web of Science: 0
Resumo

In detecting sensitive media, violence is one of the hardest to define objectively, and thus, a significant challenge to detect automatically. While many studies were conducted in detecting aspects of violence, very few try to approach the general concept. We propose a method that aims to enable machines to understand a high-level concept of violence by first breaking it down into smaller, more objective ones, such as fights, explosions, blood, and gunshots, to combine them later, leading to a better understanding of the scene. For this, we leverage characteristics of each individual sub-concept of violence (relying upon custom-tailored convolutional neural networks) to guide how they should be described. A fight scene should incorporate temporal features that a scene with blood does not need to describe. A scene with explosions or gunshots should weigh more on its audio features. With this multimodal approach, we trained visual and auditory feature detectors and later combined them into a decision neural network to give us a violence detector that considers several different aspects of the problem. This robust and modular approach allows different cultures and users to adapt the detector to their specific needs. (AU)

Processo FAPESP: 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/05668-3 - Coerência espaço-temporal e de características a partir de dados heterogêneos
Beneficiário:Bahram Lavi Sefidgari
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado