Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Machine learning predicts treatment sensitivity in multiple myeloma based on molecular and clinical information coupled with drug response

Texto completo
Autor(es):
Venezian Povoa, Lucas [1, 2, 3, 4] ; Ribeiro, Carlos Henrique Costa [1, 2] ; da Silva, Israel Tojal [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Aeronaut Inst Technol ITA, Bioengn Lab, Sao Jose Dos Campos - Brazil
[2] Aeronaut Inst Technol ITA, Comp Sci Div, Sao Jose Dos Campos - Brazil
[3] Int Res & Educ Ctr, AC Camargo Canc Ctr ACCCC, Sao Paulo - Brazil
[4] Fed Inst Educ Sci & Technol Sao Paulo IFPS, Jacarei - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: PLoS One; v. 16, n. 7 JUL 28 2021.
Citações Web of Science: 0
Resumo

Providing treatment sensitivity stratification at the time of cancer diagnosis allows better allocation of patients to alternative treatment options. Despite many clinical and biological risk markers having been associated with variable survival in cancer, assessing the interplay of these markers through Machine Learning (ML) algorithms still remains to be fully explored. Here, we present a Multi Learning Training approach (MuLT) combining supervised, unsupervised and self-supervised learning algorithms, to examine the predictive value of heterogeneous treatment outcomes for Multiple Myeloma (MM). We show that gene expression values improve the treatment sensitivity prediction and recapitulates genetic abnormalities detected by Fluorescence in situ hybridization (FISH) testing. MuLT performance was assessed by cross-validation experiments, in which it predicted treatment sensitivity with 68.70% of AUC. Finally, simulations showed numerical evidences that in average 17.07% of patients could get better response to a different treatment at the first line. (AU)

Processo FAPESP: 15/19324-6 - Retrotransposons e enzimas de edição de ácidos nucléicos: ativação, eventos somáticos e associação com o câncer
Beneficiário:Israel Tojal da Silva
Modalidade de apoio: Auxílio à Pesquisa - Regular