Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Limits of sequences of pseudo-Anosov maps and of hyperbolic 3-manifolds

Texto completo
Autor(es):
Bonnot, Sylvain [1] ; de Carvalho, Andre [1] ; Gonzalez-Meneses, Juan [2] ; Hall, Toby [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo - Brazil
[2] Univ Seville, Inst Matemat, Dept Algebra, Seville - Spain
[3] Univ Liverpool, Dept Math Sci, Liverpool, Merseyside - England
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Algebraic and Geometric Topology; v. 21, n. 3, p. 1351-1370, 2021.
Citações Web of Science: 0
Resumo

There are two objects naturally associated with a braid beta is an element of B-n of pseudo-Anosov type: a (relative) pseudo-Anosov homeomorphism phi(beta) : S-2 -> S-2; and the finite-volume complete hyperbolic structure on the 3-manifold M beta obtained by excising the braid closure of fi, together with its braid axis, from S-3. We show the disconnect between these objects, by exhibiting a family of braids [beta(q) ; q is an element of Q boolean AND(0, 1/3]] with the properties that, on the one hand, there is a fixed homeomorphism phi(0) : S-2 -> S-2 to which the (suitably normalized) homeomorphisms phi beta(q) converge as q -> 0, while, on the other hand, there are infinitely many distinct hyperbolic 3-manifolds which arise as geometric limits of the form lim(k ->infinity)M(beta qk), for sequences q(k) -> 0 (AU)

Processo FAPESP: 16/25053-8 - Dinâmica e geometria em baixas dimensões
Beneficiário:André Salles de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Temático