Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Multi-Learning Training Approach for Distinguishing Low and High Risk Cancer Patients

Texto completo
Autor(es):
Povoa, Lucas Venezian [1, 2, 3, 4] ; Balan Calvi, Uriel Caire [2] ; Lorena, Ana Carolina [2] ; Costa Ribeiro, Carlos Henrique [1, 2] ; Da Silva, Israel Tojal [3]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Aeronaut Inst Technol ITA, Bioengn Lab, BR-12228900 Sao Jose Dos Campos - Brazil
[2] Aeronaut Inst Technol ITA, Comp Sci Div, BR-12228900 Sao Jose Dos Campos - Brazil
[3] AC Camargo Canc Ctr ACCCC, Lab Bioinformat & Computat Biol, BR-01508010 Sao Paulo - Brazil
[4] Fed Inst Educ Sci & Technol Sao Paulo IFSP, Comp Sci Dept, BR-12322030 Jacarei - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: IEEE ACCESS; v. 9, p. 115453-115465, 2021.
Citações Web of Science: 0
Resumo

All cancers are caused by changes in the DNA within cells that occur over the course of an individual's lifetime. These mutations confer extensive genetic and phenotype variations within individuals, making the identification of appropriate treatments hard and costly. Moreover, cancer datasets are usually highly sparse due to the presence of few samples and many input features, making it difficult to design accurate predictors to classify patients into risk groups. Here, we report on the Multi Learning Training (MuLT) algorithm, which employs supervised, unsupervised, and self-supervised learning methods in order to take advantage of the interplay of clinical and molecular features for distinguishing low and high risk cancer patients. Our solution is evaluated using three independent and public cancer data sets considering three different performance aspects, through 5-fold cross-validation experiments. MuLT outranks other methods achieving AUCs between 0.65 and 0.77 and mean squared errors smaller than 0.24, while reducing classification complexity. These findings confirm the benefits of combining different learning algorithms and of coupling molecular and clinical data for supporting clinical decision making in Oncology. (AU)

Processo FAPESP: 15/19324-6 - Retrotransposons e enzimas de edição de ácidos nucléicos: ativação, eventos somáticos e associação com o câncer
Beneficiário:Israel Tojal da Silva
Modalidade de apoio: Auxílio à Pesquisa - Regular