Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the pitfalls of learning with limited data: A facial expression recognition case study

Texto completo
Autor(es):
Santander, Miguel Rodriguez [1] ; Albarracin, Juan Hernandez [1] ; Rivera, Adin Ramirez [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 183, NOV 30 2021.
Citações Web of Science: 0
Resumo

Deep learning models need large amounts of data for training. In video recognition and classification, significant advances were achieved with the introduction of new large databases. However, the creation of large-databases for training is infeasible in several scenarios. Thus, existing or small collected databases are typically joined and amplified to train these models. Nevertheless, training neural networks on limited data is not straightforward and comes with a set of problems. In this paper, we explore the effects of stacking databases, model initialization, and data amplification techniques when training with limited data on deep learning models' performance. We focused on the problem of Facial Expression Recognition from videos. We performed an extensive study with four databases at a different complexity and nine deep-learning architectures for video classification. We found that (i) complex training sets translate better to more stable test sets when trained with transfer learning and synthetically generated data, but their performance yields a high variance; (ii) training with more detailed data translates to more stable performance on novel scenarios (albeit with lower performance); (iii) merging heterogeneous data is not a straightforward improvement, as the type of augmentation and initialization is crucial; (iv) classical data augmentation cannot fill the holes created by joining largely separated datasets; and (v) inductive biases help to bridge the gap when paired with synthetic data, but this data is not enough when working with standard initialization techniques. (AU)

Processo FAPESP: 19/07257-3 - Aprendendo representações através de modelos generativos profundos em vídeo
Beneficiário:Gerberth Adín Ramírez Rivera
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/19947-6 - Desenvolvimento de arquiteturas de redes neurais Recurrente Convolucional para o reconhecimento de expressões faciais
Beneficiário:Gerberth Adín Ramírez Rivera
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 17/16144-2 - Transferência de dinâmica de vídeo para vídeo com modelos generativos profundos
Beneficiário:Juan Felipe Hernández Albarracín
Modalidade de apoio: Bolsas no Brasil - Doutorado