Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Simulation-Driven Deep Learning Approach for Wear Diagnostics in Hydrodynamic Journal Bearings

Texto completo
Autor(es):
Gecgel, Ozhan [1] ; Dias, Joao Paulo [2] ; Ekwaro-Osire, Stephen [1] ; Alves, Diogo Stuani [3] ; Machado, Tiago Henrique [3] ; Daniel, Gregory Bregion [3] ; de Castro, Helio Fiori [3] ; Cavalca, Katia Lucchesi [3]
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 - USA
[2] Shippensburg Univ Penn, Dept Civil & Mech Engn, Shippensburg, PA 17257 - USA
[3] Univ Estadual Campinas, Sch Mech Engn, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME; v. 143, n. 8 AUG 2021.
Citações Web of Science: 0
Resumo

Early diagnosis in rotating machinery has been a challenge when looking toward the concept of intelligent machines. A crucial and critical component in these systems is the lubricated journal bearing, subjected to wear fault by abrasive removing of material in its inner wall, mainly during run-ups and run-downs. In extreme conditions, wear faults can cause unexpected shutdowns in rotating systems. Consequently, advanced condition monitoring is an essential procedure in the wear diagnosis of journal bearings. Although an increasing number of data-driven condition monitoring approaches for rotating machines have been proposed in the past decade, they mostly rely on substantial amounts of experimental data for training, which is expensive and time-consuming to obtain. The objective of this work is to develop a framework using a deep learning algorithm to classify wear faults in hydrodynamic journal bearings using simulated vibrations signals. Numerically simulated data sets under different wear severity levels and operating conditions were used to train and test the diagnostics framework. The results show that the proposed framework can be a promising tool to diagnose wear faults in journal bearings. (AU)

Processo FAPESP: 15/20363-6 - Identificação e controle tolerantes a falhas em sistemas rotativos
Beneficiário:Katia Lucchesi Cavalca Dedini
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/21581-5 - Avaliação experimental de um modelo de falha por desgaste em mancais hidrodinâmicos
Beneficiário:Diogo Stuani Alves
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 19/00974-1 - Monitoramento da condição e prognóstico de mancais considerando incertezas
Beneficiário:Katia Lucchesi Cavalca Dedini
Modalidade de apoio: Auxílio à Pesquisa - Regular