Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Gravitational multipole renormalization

Texto completo
Autor(es):
Almeida, Gabriel Luz [1] ; Foffa, Stefano [2, 3] ; Sturani, Riccardo [4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, Ave Senador Salgado Filho, BR-59078970 Natal, RN - Brazil
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva - Switzerland
[3] Univ Geneva, Ctr Astroparticle Phys, CH-1211 Geneva - Switzerland
[4] Univ Fed Rio Grande do Norte, Int Inst Phys, Campus Univ, Lagoa Nova CP 1613, BR-59078970 Natal, RN - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Physical Review D; v. 104, n. 8 OCT 27 2021.
Citações Web of Science: 0
Resumo

We study the effect of scattering gravitational radiation off the static background curvature, up to second order in Newton constant, known in the literature as tail and tail-of-tail processes, for generic electric and magnetic multipoles. Starting from the multipole expansion of composite compact objects, and as expected due to the known electric quadrupole case, both long- and short-distance (UV) divergences are encountered. The former disappear from properly defined observables, the latter are renormalized, and their associated logarithms give rise to a classical renormalization group flow. UV divergences alert for incompleteness of the multipolar description of the composite source and are expected not to be present in a UV-complete theory, as explicitly derived in the literature for the case of conservative dynamics. Logarithmic terms from tail-of-tail processes associated to generic magnetic multipoles are computed in this work for the first time. (AU)

Processo FAPESP: 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica
Beneficiário:Nathan Jacob Berkovits
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais