Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives

Texto completo
Autor(es):
Asadzadeh, Saeid [1] ; de Oliveira, Wilson Jose [1] ; de Souza Filho, Carlos Roberto [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Campinas UNICAMP, Rua Carlos Gomes 250, BR-13083855 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING; v. 208, n. D JAN 2022.
Citações Web of Science: 0
Resumo

An unmanned aerial vehicle (UAV), popularly known as a drone, is an aircraft without a human pilot aboard. Recent developments in sensor technology and navigation systems have made drones a powerful and reliable basis for professional data acquisition. Today, the use of UAVs has expanded massively in the civil and commercial sectors and this technology has found its way into almost every industrial sector including the petroleum industry. Drone technology offers a great potential to revolutionize the mapping, monitoring, inspection, and surveillance procedures of the petroleum industry by providing a faster, safer, and more cost-efficient way of mass data collection. This article offers a review of the common UAV platforms and sensor systems and highlights the state-of-the-art and application examples of drone remote sensing in the oil and gas industry. Six broad areas are recognized comprising offshore oil spill detection, oil leakage detection, pipeline monitoring, gas emission sensing, remote facility inspection, petroleum exploration (i.e., land surveying, geologic mapping, and petroleum exploration), and environmental monitoring. Research gaps and open issues along with opportunities for further developments in each of these areas are highlighted. (AU)

Processo FAPESP: 17/25002-7 - Avaliação de dados no infravermelho de ondas longas (LWIR) e temperatura de superfície para caracterização de microexsudações de hidrocarbonetos terrestres
Beneficiário:Saeid Asadzadeh
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado