Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth

Texto completo
Autor(es):
Alves, Claudianor O. [1] ; Ourraoui, Anass [2] ; Pimenta, Marcos T. O. [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429970 Campina Grande, Paraiba - Brazil
[2] Univ Mohamed I, Dept Math, FSO, Oujda - Morocco
[3] Univ Estadual Paulista Unesp, Fac Ciencias & Tecnol, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Differential Equations; v. 308, p. 545-574, JAN 25 2022.
Citações Web of Science: 0
Resumo

The aim of this paper is to establish two results about multiplicity of solutions to problems involving the 1-Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem [-Delta(u)(1) + xi u/vertical bar u vertical bar = lambda vertical bar u vertical bar(q-2)u + vertical bar u vertical bar(1{*})-2u, in Omega, u=0, on partial derivative Omega, where Omega is a smooth bounded domain in R-N, N >= 2 and xi is an element of [0, 1]. Moreover, lambda > 0, q is an element of (1, 1{*}) and 1{*} = N/N-1. The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that xi = 1, Omega= [x is an element of RN : r < |x| < r + 1], N > 2, N not equal 3 and r > 0. In the second one, is a smooth bounded domain, xi = 0, and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a C1 functional with a convex lower semicontinuous functional. (C) 2021 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 19/14330-9 - Problemas elípticos variacionais e não-variacionais envolvendo o operador 1-Laplaciano
Beneficiário:Marcos Tadeu de Oliveira Pimenta
Modalidade de apoio: Auxílio à Pesquisa - Regular