Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: Towards the detection of SARS-CoV-2

Texto completo
Autor(es):
Stefano, Jessica Santos [1] ; Guterres e Silva, Luiz Ricardo [1] ; Rocha, Raquel Gomes [2] ; Brazaca, Lais Canniatti [3, 4] ; Richter, Eduardo Mathias [2, 3] ; Abarza Munoz, Rodrigo Alejandro [2, 3] ; Janegitz, Bruno Campos [1]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Nat Sci Math & Educ, BR-13600970 Araras, SP - Brazil
[2] Univ Fed Uberlandia, Inst Chem, BR-38400902 Uberlandia, MG - Brazil
[3] Natl Inst Sci & Technol Bioanal INCTBio, BR-13083970 Campinas, SP - Brazil
[4] Univ Sao Paulo, Sao Carlos Inst Phys, Nanomed & Nanotoxicol Grp, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Analytica Chimica Acta; v. 1191, JAN 25 2022.
Citações Web of Science: 0
Resumo

The 3D printing technology has gained ground due to its wide range of applicability. The development of new conductive filaments contributes significantly to the production of improved electrochemical devices. In this context, we report a simple method to producing an efficient conductive filament, containing graphite within the polymer matrix of PLA, and applied in conjunction with 3D printing technology to generate (bio)sensors without the need for surface activation. The proposed method for producing the conductive filament consists of four steps: (i) mixing graphite and PLA in a heated reflux system; (ii) recrystallization of the composite; (iii) drying and; (iv) extrusion. The produced filament was used for the manufacture of electrochemical 3D printed sensors. The filament and sensor were characterized by physicochemical techniques, such as SEM, TGA, Raman, FTIR as well as electrochemical techniques (EIS and CV). Finally, as a proof-of-concept, the fabricated 3D-printed sensor was applied for the determination of uric acid and dopamine in synthetic urine and used as a platform for the development of a biosensor for the detection of SARS-CoV-2. The developed sensors, without pre-treatment, provided linear ranges of 0.5-150.0 and 5.0-50.0 mu mol L-1, with low LOD values (0.07 and 0.11 mu mol L-1), for uric acid and dopamine, respectively. The developed biosensor successfully detected SARS-CoV-2 S protein, with a linear range from 5.0 to 75.0 nmol L-1 (0.38 mu g mL(-1) to 5.74 mu g mL(-1)) and LOD of 1.36 nmol L-1 (0.10 mu g mL(-1)) and sensitivity of 0.17 mu A nmol(-1) L (0.01 mu A mu g(-1) mL). Therefore, the lab-made produced and the ready-to-use conductive filament is promising and can become an alternative route for the production of different 3D electrochemical (bio)sensors and other types of conductive devices by 3D printing. (C) 2021 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 17/21097-3 - Interações abelha-agricultura: perspectivas para a utilização sustentável
Beneficiário:Osmar Malaspina
Modalidade de apoio: Auxílio à Pesquisa - Programa BIOTA - Temático
Processo FAPESP: 18/19750-3 - Explorando a detecção C4D para o desenvolvimento de biossensores microfluídicos inovadores e de baixo custo
Beneficiário:Laís Canniatti Brazaca
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado