Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Complexity reduction in the 3D Kuramoto model

Texto completo
Autor(es):
Barioni, Ana Elisa D. [1] ; de Aguiar, Marcus A. M. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Unicamp Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: CHAOS SOLITONS & FRACTALS; v. 149, AUG 2021.
Citações Web of Science: 0
Resumo

The dynamics of large systems of coupled oscillators is a subject of increasing importance with prominent applications in several areas such as physics and biology. The Kuramoto model, where a set of oscillators move around a circle representing their phases, is a paradigm in this field, exhibiting a continuous transition between disordered and synchronous motion. Reinterpreting the oscillators as rotating unit vectors, the model was extended to higher dimensions by allowing vectors to move on the surface of D-dimensional spheres, with D = 2 corresponding to the original model. It was shown that the transition to synchronous dynamics was discontinuous for odd D. Inspired by results in 2D, Ott et al proposed an ansatz for the density function describing the oscillators and derived equations for the ansatz parameters, effectively reducing the dynamics complexity. Here we take a different approach for the 3D system and construct an ansatz based on spherical harmonics decomposition of the distribution function. Our result differs from Ott's work and leads to similar but simpler equations determining the dynamics of the order parameter. We derive the phase diagram of equilibrium solutions for several distributions of natural frequencies and find excellent agreement with numerical solutions for the full system dynamics. We believe our approach can be generalized to higher dimensions, leading to complexity reduction in other systems of coupled equations. (c) 2021 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 19/24068-0 - Osciladores generalizados de Kuramoto com forças externas
Beneficiário:Ana Elisa Dellamatrice Barioni
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica
Beneficiário:Nathan Jacob Berkovits
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais
Processo FAPESP: 19/20271-5 - Modelos evolutivos em dinâmica de populações
Beneficiário:Marcus Aloizio Martinez de Aguiar
Modalidade de apoio: Auxílio à Pesquisa - Regular