Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Persistence properties of a Camassa-Holm type equation with (n+1)-order non-linearities

Texto completo
Autor(es):
Freire, Igor Leite [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Comput & Cognicao Univ Fed ABC, Ctr Matemat, Santo Andre, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Mathematical Physics; v. 63, n. 1 JAN 1 2022.
Citações Web of Science: 0
Resumo

Lower order conservation laws and symmetries of a family of hyperbolic equations having the Camassa-Holm equation as a particular member are obtained. We show that the equation has two conservation laws with zeroth order characteristics and that its symmetries are generated by translations in the independent variables and a certain scaling, as well as some invariant solutions are studied. Next, we consider persistence and asymptotic properties for the solutions of the equation considered. In particular, we analyze the behavior of the solutions of the equation for large values of the spatial variable. We show that if the initial data has a certain asymptotic exponential decaying, then such a property persists for any time as long as the solution exists. Moreover, depending on the behavior of the initial data for large values of the spatial variable and if for some further time the solution shares the same behavior, then it necessarily vanishes identically. Finally, we prove unique continuation results for the solutions of the equation. (AU)

Processo FAPESP: 20/02055-0 - Equações de Novikov com não-linearidades quadráticas: propriedades estruturais e qualitativas
Beneficiário:Igor Leite Freire
Modalidade de apoio: Auxílio à Pesquisa - Regular