Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Dynamic graph in a symbolic data framework: An account of the causal relation using COVID-19 reports and some reflections on the financial world

Texto completo
Autor(es):
Nascimento, Diego C. [1] ; Pimentel, Bruno A. [2] ; Souza, Renata M. C. R. [3] ; Costa, Lilia [4] ; Goncalves, Sandro [5] ; Louzada, Francisco [6]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Atacama, Dept Matemat, Copiapo - Chile
[2] Univ Fed Alagoas, Inst Comp, Maceio, Alagoas - Brazil
[3] Univ Fed Pernambuco, Ctr Informat, Recife, PE - Brazil
[4] Univ Fed Bahia, Inst Math & Stat, Salvador, BA - Brazil
[5] B3 Financial Market SA, Quantitat Res Dept, Sao Paulo - Brazil
[6] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos - Brazil
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: CHAOS SOLITONS & FRACTALS; v. 153, n. 2 DEC 2021.
Citações Web of Science: 0
Resumo

This article aims to evaluate a complex relation structure represented by a graph, considering a high dimensional dataset in the Symbolic Data Analysis domain. We consider COVID-19 pandemic dynamic data regarding the first semester of 2020 associated with the daily infection rate in 214 countries with remarkable trends from the financial market; thus, the empirical causality. This work is innovative as we developed a dynamic graphical model for interval data based on center-range representation, which can shrink the parametric high-dimensional time series space and uncovers causal relations. Symbolic Data Analysis provides tools to reduce data dimension through the fusion of multivariate time series in data classes, which allows considering complex information through symbolic interval multivalued variables. Additionally, the Multiregression Dynamic Model (MDM) approach estimates a Directed Acyclic Graph (DAG) which distinguishes structural changes and irregular patterns by modeling the joint learning of multivariate time series, that is, allowing heterogeneous pattern collections and simultaneously estimating relationships across series, now as symbolic interval data. Time-varying parameter estimates of allowed us to translate the influence (internal and external) of these structures dynamically, during the first months of 2020, on the interconnectedness of global regions and the spread of coronavirus worldwide. Then, descriptions of the internal variation of the regions are obtained, after the first months of the semester, reflecting the lockdown (that is, the virus transmission occurs in a generalized way worldwide, then reduced, but concentrated within the regions and not more between them). Finally, an association was sought on the impact of the disclosure (news) of COVID-19 and empirical impacts with performances of the main indices of the global financial market, in which an association between these phenomena was noticeable. (c) 2021 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 20/09174-5 - Recomendação de itens de interesse da BeeNet
Beneficiário:Diego Carvalho do Nascimento
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs