Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A numerical method for solving three-dimensional generalized Newtonian free surface flows

Texto completo
Autor(es):
Tomé, M. F. ; Grossi, L. ; Castelo, A. ; Cuminato, J. A. [4] ; Mangiavacchi, N. ; Ferreira, V. G. ; Sousa, F. S. de ; McKee, S.
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: Journal of Non-Newtonian Fluid Mechanics; v. 123, n. 2-3, p. 85-103, Nov. 2004.
Área do conhecimento: Ciências Exatas e da Terra - Matemática
Assunto(s):Métodos numéricos em dinâmica de fluidos   Análise numérica
Resumo

This work presents a numerical technique for solving three-dimensional generalized Newtonian free surface flows. It is an extension to three dimensions of the technique introduced by Tomé et al. [M.F. Tomé, B. Duffy, S. McKee, A numerical technique for solving unsteady non-Newtonian free surface flows, J. Non-Newtonian Fluid Mech. 62 (1996) 9-34] but additionally includes many other features. The governing equations are solved by a finite difference method on a staggered grid. It uses marker particles to describe the fluid; these particles provide the location and visualization of the fluid free surface. As currently implemented, the present method can simulate generalized Newtonian flow in which the viscosity is modelled using the Cross model. The numerical technique presented in this paper is validated by using exact solutions for the flow of a Cross model fluid inside a pipe and convergence is demonstrated by means of grid refinement for the problem of a spreading drop. Numerical results showing the flow of a generalized Newtonian fluid jet impinging onto a flat surface and that of a jet buckling are given. (AU)

Processo FAPESP: 00/03385-0 - SNENS III - solução numérica das equações de Navier-Stokes: escoamentos tridimensionais
Beneficiário:José Alberto Cuminato
Modalidade de apoio: Auxílio à Pesquisa - Temático