Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

ater tank and swimming pool detection based on remote sensing and deep learning: Relationship with socioeconomic level and applications in dengue contro

Texto completo
Autor(es):
Cunha, Higor Souza [1] ; Sclauser, Brenda Santana [1] ; Wildemberg, Pedro Fonseca [2] ; Militao Fernandes, Eduardo Augusto [2] ; dos Santos, Jefersson Alex [2] ; Lage, Mariana de Oliveira [3] ; Lorenz, Camila [4] ; Barbosa, Gerson Laurindo [5] ; Quintanilha, Jose Alberto [6] ; Chiaravalloti-Neto, Francisco [4]
Número total de Autores: 10
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Polytech Sch, Dept Elect Engn, Sao Paulo - Brazil
[2] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG - Brazil
[3] Univ Sao Paulo, Inst Energy & Environm, Environm Sci Grad Program PROCAM, Sao Paulo - Brazil
[4] Univ Sao Paulo, Fac Publ Hlth, Dept Epidemiol, Sao Paulo - Brazil
[5] State Dept Hlth, Endem Control Superintendence, Sao Paulo - Brazil
[6] Univ Sao Paulo, Inst Energy & Environm, Sci Div Environm Management Sci & Technol, Sao Paulo - Brazil
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: PLoS One; v. 16, n. 12 DEC 9 2021.
Citações Web of Science: 0
Resumo

Studies have shown that areas with lower socioeconomic standings are often more vulnerable to dengue and similar deadly diseases that can be spread through mosquitoes. This study aims to detect water tanks installed on rooftops and swimming pools in digital images to identify and classify areas based on the socioeconomic index, in order to assist public health programs in the control of diseases linked to the Aedes aegypti mosquito. This study covers four regions of Campinas, SAo Paulo, characterized by different socioeconomic contexts. With mosaics of images obtained by a 12.1 MP Canon PowerShot S100 (5.2 mm focal length) carried by unmanned aerial vehicles, we developed deep learning algorithms in the scope of computer vision for the detection of water tanks and swimming pools. An object detection model, which was initially created for areas of Belo Horizonte, Minas Gerais, was enhanced using the transfer learning technique, and allowed us to detect objects in Campinas with fewer samples and more efficiency. With the detection of objects in digital images, the proportions of objects per square kilometer for each region studied were estimated by adopting a Chi-square distribution model. Thus, we found that regions with low socioeconomic status had more exposed water tanks, while regions with high socioeconomic levels had more exposed pools. Using deep learning approaches, we created a useful tool for Ae. aegypti control programs to utilize and direct disease prevention efforts. Therefore, we concluded that it is possible to detect objects directly related to the socioeconomic level of a given region from digital images, which encourages the practicality of this approach for studies aimed towards public health. (AU)

Processo FAPESP: 15/06687-3 - Avaliação da importância de pontos estratégicos na dispersão do vetor Aedes aegypti, e uso de índice de condição da moradia e imagens de sensoriamento remoto na identificação de áreas de risco para a presença de Aedes aegypti
Beneficiário:Gerson Laurindo Barbosa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 20/01596-8 - Uso de sensoriamento remoto e inteligência artificial para prever áreas com alto risco de infestação por Aedes aegypti e arboviroses
Beneficiário:Francisco Chiaravalloti Neto
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 17/10297-1 - Identificação de áreas de risco para arboviroses utilizando armadilhas para adultos de Aedes aegypti e Aedes albopictus e imagens de sensoriamento remoto
Beneficiário:Camila Lorenz
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado