Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

odimension growth for polynomial identities of representations of Lie algebra

Texto completo
Autor(es):
da Silva Macedo, David Levi [1] ; Koshlukov, Plamen [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Fed Rural Pernambuco, Dom Manoel de Medeiros Str, BR-52171900 Recife, PE - Brazil
[2] Univ Estadual Campinas, 651 Sergio Buarque de Holanda, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Mathematische Nachrichten; v. 295, n. 2, p. 281-308, FEB 2022.
Citações Web of Science: 0
Resumo

Let K be a field of characteristic zero. We study the asymptotic behavior of the codimensions for polynomial identities of representations of Lie algebras, also called weak identities. These identities are related to pairs of the form (A,L)\$(A,L)\$ where A is an associative enveloping algebra for the Lie algebra L. We obtain a characterization of ideals of weak identities with polynomial growth of the codimensions in terms of their cocharacter sequence. Recall that such a characterization was obtained by Kemer in {[}12] for associative algebras and by Benediktovich and Zalesskii in {[}2] for Lie algebras. We prove that the pairs (UT2,UT2(-))\$\textbackslash{}Big (UT\_2,UT\_2<\^{}>[(-)]\textbackslash{}Big )\$, (E,E(-))\$\textbackslash{}big (E,E<\^{}>[(-)]\textbackslash{}big )\$ and (M2,sl2)\$\textbackslash{}big (M\_2,sl\_2\textbackslash{}big )\$ generate varieties of pairs of almost polynomial growth. Here E denotes the infinite dimensional Grassmann algebra with 1. Also UT2\$UT\_2\$ is the associative subalgebra of M-2 (the 2 x 2 matrices over the field K) consisting of upper triangular matrices and sl2\$sl\_2\$ is the Lie subalgebra of M2(-)\$M\_2<\^{}>[(-)]\$ of the traceless matrices. (AU)

Processo FAPESP: 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático