| Texto completo | |
| Autor(es): |
Número total de Autores: 2
|
| Afiliação do(s) autor(es): | [1] Univ Fed Goias, Dept Math, IME, BR-74690900 Goiania, Go - Brazil
[2] Univ Estadual Campinas, Dept Math, IMECC, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES; v. 159, p. 168-195, MAR 2022. |
| Citações Web of Science: | 0 |
| Resumo | |
This work is devoted to the study of global connections between typical generic singularities, named T-singularities, in piecewise smooth dynamical systems. Such a singularity presents the so-called nonsmooth diabolo, which consists on a pair of invariant cones emanating from it. We analyze global features arising from the communication between the branches of a nonsmooth diabolo of a T-singularity and we prove that, under generic conditions, such communication leads to a chaotic behavior of the system. More specifically, we relate crossing orbits of a Filippov system presenting certain crossing self-connections to a T-singularity, with a Smale horseshoe of a first return map associated to the system. The techniques used in this work rely on the detection of transverse intersections between invariant manifolds of a hyperbolic fixed point of saddle type of such a first return map and the analysis of the Smale horseshoe associated to it. From the specific case discussed in our approach, we present a robust chaotic phenomenon for which its counterpart in the smooth case seems to happen only for highly degenerate systems. (C) 2021 Elsevier Masson SAS. All rights reserved. (AU) | |
| Processo FAPESP: | 19/01682-4 - Dinâmica Global de Equações Diferenciais |
| Beneficiário: | Otávio Marçal Leandro Gomide |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |
| Processo FAPESP: | 18/13481-0 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos |
| Beneficiário: | Marco Antônio Teixeira |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |