| Texto completo | |
| Autor(es): |
de Almeida, Lucas Barbosa
;
Pereira-Ferrero, Vanessa Helena
;
Valem, Lucas Pascotti
;
Almeida, Jurandy
;
Guimaraes Pedronette, Daniel Carlos
;
IEEE Comp Soc
Número total de Autores: 6
|
| Tipo de documento: | Artigo Científico |
| Fonte: | 2021 34TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2021); v. N/A, p. 8-pg., 2021-01-01. |
| Resumo | |
Despite of the substantial success of Convolutional Neural Networks (CNNs) on many recognition and representation tasks, such models are very reliant on huge amount of data to allow effective training. In order to improve the generalization ability of CNNs, several approaches have been proposed, including variations of data augmentation strategies. With the goal of achieving more effective retrieval results on unsupervised learning scenarios, we propose a representation learning approach which exploits a rank-based formulation to build a more comprehensive data representation. The proposed model uses 2D and 3D CNNs trained by transfer learning and fuse both representations through a rank-based formulation based on manifold learning algorithms. Our approach was evaluated on an unsupervised image retrieval scenario applied to action recognition datasets. The experimental results indicated that significant effectiveness gains can be obtained on various datasets, reaching +56.93% of relative gains on MAP scores. (AU) | |
| Processo FAPESP: | 18/15597-6 - Aplicação e investigação de métodos de aprendizado não-supervisionado em tarefas de recuperação e classificação |
| Beneficiário: | Daniel Carlos Guimarães Pedronette |
| Modalidade de apoio: | Auxílio à Pesquisa - Jovens Pesquisadores - Fase 2 |
| Processo FAPESP: | 20/02183-9 - Aprendizado não supervisionado baseado em ranqueamento e aprendizado profundo em domínios diversos |
| Beneficiário: | Vanessa Helena Pereira Ferrero |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |
| Processo FAPESP: | 17/25908-6 - Aprendizado fracamente supervisionado para análise de vídeos no domínio comprimido em tarefas de recuperação e classificação para alertas visuais |
| Beneficiário: | João Paulo Papa |
| Modalidade de apoio: | Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE |