Busca avançada
Ano de início
Entree


A Precise Flow Representation for Autonomous IoT-Devices Reconnaissance

Texto completo
Autor(es):
Bezerra, Govinda M. G. ; Ferreira, Tadeu ; Mattos, Diogo M. F. ; Zhani, MF ; Limam, N ; Borylo, P ; Boubendir, A ; DosSantos, CRP
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: 25TH CONFERENCE ON INNOVATION IN CLOUDS, INTERNET AND NETWORKS (ICIN 2022); v. N/A, p. 8-pg., 2022-01-01.
Resumo

Devices from the Internet of Things increasingly mediate a significant number of essential everyday activities. IoT devices empower homes, industries, and offices, monitoring, sensing, and acting ubiquitously and stealthily. However, each device produces a network fingerprint that leaks information about users' behaviors and routines. This paper proposes a flow representation method for precise recognition of different types of IoT Devices. Our proposal relies on a tensor representation of the network flows to retrieve spatial and temporal correlation of flows. We show that our proposal achieves up to 99% precision on classifying IoT network flows using machine learning algorithms, such as Convolution Neural Networks, Recurrent Neural Networks and boosted decision trees. (AU)

Processo FAPESP: 18/23062-5 - MEGACHAIN: blockchain para integração, privacidade e auditoria de sistemas de megacidades
Beneficiário:Célio Vinicius Neves de Albuquerque
Modalidade de apoio: Auxílio à Pesquisa - Regular