Busca avançada
Ano de início
Entree


Polynomial identities for the Jordan algebra of 2 x 2 upper triangular matrices

Texto completo
Autor(es):
Goncalves, Dimas Jose ; Koshlukov, Plamen ; Salomao, Mateus Eduardo
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Algebra; v. 593, p. 30-pg., 2022-03-01.
Resumo

Let K be a field (finite or infinite) of char(K) &NOTEQUexpressionL; 2 and let UT2(K) be the 2 x 2 upper triangular matrix algebra over K. If center dot is the usual product on UT2(K) then with the new product a b = (1/2)(a center dot b + b center dot a) we have that UT2(K) is a Jordan algebra, denoted by UJ(2) = UJ(2)(K). In this paper, we describe the set I of all polynomial identities of UJ(2) and a linear basis for the corresponding relatively free algebra. Moreover, if K is infinite we prove that I has the Specht property. In other words I, and every T-ideal containing I, is finitely generated as a T-ideal. (C) 2021 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático