| Texto completo | |
| Autor(es): |
Cerqueira, Andressa
;
Garcia, Nancy L.
Número total de Autores: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Journal of Mathematical Physics; v. 63, n. 4, p. 21-pg., 2022-04-01. |
| Resumo | |
We consider a random graph model on Z(d) that incorporates the interplay between the statistics of the graph and the underlying space where the vertices are located. Based on a graphical construction of the model as the invariant measure of a birth and death process, we prove the existence and uniqueness of a measure defined on graphs with vertices in Z(d), which coincides with the limit along the measures over graphs with the finite vertex set. As a consequence, theoretical properties, such as exponential mixing of the infinite volume measure and central limit theorem for averages of a real-valued function of the graph, are obtained. Moreover, a perfect simulation algorithm based on the clan of ancestors is described in order to sample a finite window of the equilibrium measure defined on Z(d).& nbsp;& nbsp;Published under an exclusive license by AIP Publishing. (AU) | |
| Processo FAPESP: | 13/07699-0 - Centro de Pesquisa, Inovação e Difusão em Neuromatemática - NeuroMat |
| Beneficiário: | Oswaldo Baffa Filho |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs |
| Processo FAPESP: | 17/10555-0 - Modelagem estocástica de sistemas interagentes |
| Beneficiário: | Fabio Prates Machado |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |