Busca avançada
Ano de início
Entree


Extending the Differential Image Foresting Transform to Root-based Path-cost Functions with Application to Superpixel Segmentation

Texto completo
Autor(es):
Condori, Marcos A. T. ; Cappabianco, Fabio A. M. ; Falcao, Alexandre X. ; Miranda, Paulo A. V. ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI); v. N/A, p. 8-pg., 2017-01-01.
Resumo

The Image Foresting Transform (IFT) is a general framework to develop image processing tools for a variety of tasks such as image segmentation, boundary tracking, morphological filtering, pixel clustering, among others. The Differential Image Foresting Transform (DIFT) comes in handy for scenarios where multiple iterations of IFT over the same image with small modifications on the input parameters are expected, reducing the processing complexity from linear to sublinear with respect to the number of pixels. In this paper, we propose an enhanced variant of the DIFT algorithm that avoids inconsistencies, when the connectivity function is not monotonically incremental. Our algorithm works with the classical and non-classifical connectivity functions based on root position. Experiments were conducted on a superpixel task, showing a significant improvement to a state-of-the-art method. (AU)

Processo FAPESP: 16/21591-5 - Desenvolvimento de métodos robustos para delineamento de bordas em imagens utilizando grafos
Beneficiário:Fábio Augusto Menocci Cappabianco
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 11/50761-2 - Modelos e métodos de e-Science para ciências da vida e agrárias
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático