Busca avançada
Ano de início
Entree


Predicting Response Time in SDN-Fog Environments for IIoT Applications

Texto completo
Autor(es):
Mostrar menos -
de Oliveira, Guilherme Werneck ; Ney, Rodrigo Toscano ; Herrera, Juan Luis ; Batista, Daniel Macedo ; Hirata, R. ; Galan-Jimenez, Jaime ; Berrocal, Javier ; Murillo, Juan Manuel ; dos Santos, Aldri Luiz ; Nogueira, Michele ; Velazquez, R
Número total de Autores: 11
Tipo de documento: Artigo Científico
Fonte: 2021 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (LATINCOM 2021); v. N/A, p. 6-pg., 2021-01-01.
Resumo

In IoT application scenarios, the response time is one of the attributes that most require attention and, for this reason, the paradigm of decentralized (or fog) computation has gained ground. Moreover, to help reduce the response time of decentralized IoT networks, routing optimization approaches can be employed using software-defined networking (SDN). When both contexts are combined, a new one called SDN-Fog Environments appears. This work presents a solution to predict the response time of Industrial Internet of Things (IIoT) applications using supervised and unsupervised learning for SDN-Fog Environments. Results show that the prediction of the response time of IIoT scenarios was close to the times obtained by solving the problem in the literature. Furthermore, according to the best-performing models, the prediction framework had less than 50 milliseconds of variation, executed in less than one second. (AU)

Processo FAPESP: 14/50937-1 - INCT 2014: da Internet do Futuro
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/24485-9 - Internet do futuro aplicada a cidades inteligentes
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/22979-2 - IoT-SED: segurança e eficiência no transporte de dados na Internet das Coisas
Beneficiário:Daniel Macêdo Batista
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/23098-0 - MENTORED: da modelagem à experimentação - predizendo e detectando ataques DDoS e zero-day
Beneficiário:Michele Nogueira Lima
Modalidade de apoio: Auxílio à Pesquisa - Temático