Busca avançada
Ano de início
Entree


A Classification Strategy for Internet of Things Data Based on the Class Separability Analysis of Time Series Dynamics

Texto completo
Autor(es):
Borges, Joao B. ; Ramos, Heitor S. ; Loureiro, Antonio A. F.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: ACM TRANSACTIONS ON INTERNET OF THINGS; v. 3, n. 3, p. 30-pg., 2022-08-01.
Resumo

This article proposes TSCLAS, a time series classification strategy for the Internet of Things (IoT) data, based on the class separability analysis of their temporal dynamics. Given the large number and incompleteness of IoT data, the use of traditional classification algorithms is not possible. Thus, we claim that solutions for IoT scenarios should avoid using raw data directly, preferring their transformation to a newdomain. In the ordinal patterns domain, it is possible to capture the temporal dynamics of raw data to distinguish them. However, to be applied to this challenging scenario, TSCLAS follows a strategy for selecting the best parameters for the ordinal patterns transformation based on maximizing the class separability of the time series dynamics. We show that our method is competitive compared to other classification algorithms from the literature. Furthermore, TSCLAS is scalable concerning the length of time series and robust to the presence of missing data gaps on them. By simulating missing data gaps as long as 50% of the data, our method could beat the accuracy of the compared classification algorithms. Besides, even when losing in accuracy, TSCLAS presents lower computation times for both training and testing phases. (AU)

Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/23064-8 - Mobilidade na computação urbana: caracterização, modelagem e aplicações (MOBILIS)
Beneficiário:Antonio Alfredo Ferreira Loureiro
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/05121-4 - Análise de dados heterogêneos em computação urbana
Beneficiário:Heitor Soares Ramos Filho
Modalidade de apoio: Auxílio à Pesquisa - Regular