Busca avançada
Ano de início
Entree


IoT DDoS Detection Based on Stream Learning

Texto completo
Autor(es):
Mostrar menos -
Arbex, Gustavo Vitral ; Machado, Ketly Goncalves ; Nogueira, Michele ; Batista, Daniel M. ; Hirata, Roberto, Jr. ; Machuca, CM ; Martins, L ; Sargento, S ; Wauters, T ; Jorge, L ; Salhab, N ; Chemouil, P
Número total de Autores: 12
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE 2021 12TH INTERNATIONAL CONFERENCE ON NETWORK OF THE FUTURE (NOF 2021); v. N/A, p. 8-pg., 2021-01-01.
Resumo

The Internet of Things (IoT) represents a new reality, as smart devices spread quickly and a higher number of applications arises. This attracts the attention of not only legitimate users but also attackers aiming to jeopardize the entire IoT infrastructure. Intrusion detection mechanisms are paramount in this networking environment as its first line of defense. Hence, this work proposes a Network Intrusion Detection System (NIDS) that deals with the Distributed Denial of Service (DDoS) attack, one of the most critical attacks that occur through IoT. The proposed NIDS uses stream learning to detect DDoS attacks in the IoT network and is designed to be deployed in a fog infrastructure. The detection model, built on Hoeffding Anytime Tree (HATT) algorithm, achieved a 99% accuracy and a 99% recall. (AU)

Processo FAPESP: 14/50937-1 - INCT 2014: da Internet do Futuro
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/24485-9 - Internet do futuro aplicada a cidades inteligentes
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/22979-2 - IoT-SED: segurança e eficiência no transporte de dados na Internet das Coisas
Beneficiário:Daniel Macêdo Batista
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/23098-0 - MENTORED: da modelagem à experimentação - predizendo e detectando ataques DDoS e zero-day
Beneficiário:Michele Nogueira Lima
Modalidade de apoio: Auxílio à Pesquisa - Temático