Busca avançada
Ano de início
Entree


Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations

Texto completo
Autor(es):
Guimaraes Junnyor, Wellingthon da Silva ; De Maria, Isabella Clerici ; Araujo-Junior, Cezar Francisco ; de Lima, Camila Cassante ; Vitti, Andre Cesar ; Figueiredo, Getulio Coutinho ; Falci Dechen, Sonia Carmela
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: CIENTIA AGRICOL; v. 76, n. 6, p. 9-pg., 2019-11-01.
Resumo

Mechanical sugarcane harvesting increases soil compaction due to the intense traffic of agricultural machinery, reducing longevity of sugarcane crops. In order to mitigate the harmful effects caused by agricultural traffic on the soil structure in sugarcane fields, this study evaluated impacts of mechanical sugarcane harvesting on traffic lane under two soil tillage systems based on load bearing capacity models. The experiment was carried out in the region of Piracicaba, state of Sao Paulo, Brazil, on a Rhodic Nitisol, under conventional tillage (CT) and deep strip-tillage (DST). For CT soil tillage was applied to the entire area with a heavy disk harrow, at operating depths from 0.20 to 0.30 m followed by a leveling harrow at a depth of 0.15 m. For DST, soil tillage was performed in part of the area at a depth of 0.80 m, forming strip beds for sugarcane planting, while the traffic lanes were not disturbed. Undisturbed soil samples from traffic lanes were used in the uniaxial compression test to quantify preconsolidation pressure and to model the soil load bearing capacity. The surface layer (0.00-0.10 m) was most susceptible to compaction, regardless of the tillage system (CT or DST) used. In the DST, the traffic lane maintained the previous soil stress history and presented higher load bearing capacity (LBC) than the traffic lane in the CT. As in CT the soil was tilled, the stress history was discontinued. This larger LBC in DTS minimized the impacts of the sugarcane harvest. Under CT, additional soil compaction due to mechanical sugarcane harvesting in the traffic lane was observed after the second sugarcane harvest. There was a reduction in load bearing capacity from 165 kPa to 68 kPa under CT and from 230 kPa to 108 kPa under DST, from the first to the second harvest at surface layer. Water content at mechanical harvesting was the most relevant factor to maximize impacts on the soil structure in traffic lanes, for both tillage systems. (AU)

Processo FAPESP: 13/10427-1 - Desenvolvimento radicular e atributos físicos, químicos e biológicos em sistemas de preparo do solo para a cana-de-açúcar
Beneficiário:Sonia Carmela Falci Dechen
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/21687-4 - Desenvolvimento radicular e atributos físicos, químicos e biológicos em sistemas de preparo do solo para a cana-de-açúcar.
Beneficiário:Getulio Coutinho Figueiredo
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 14/07434-9 - Comportamento compressivo e avaliação física de solos cultivados com cana-de-açúcar
Beneficiário:Wellingthon da Silva Guimarães Júnnyor
Modalidade de apoio: Bolsas no Brasil - Doutorado