Busca avançada
Ano de início
Entree


Incremental Attribute Computation in Component-Hypertrees

Texto completo
Autor(es):
Morimitsu, Alexandre ; Luz Alves, Wonder Alexandre ; da Silva, Dennis Jose ; Gobber, Charles Ferreira ; Hashimoto, Ronaldo Fumio ; Burgeth, B ; Kleefeld, A ; Naegel, B ; Passat, N ; Perret, B
Número total de Autores: 10
Tipo de documento: Artigo Científico
Fonte: MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING, ISMM 2019; v. 11564, p. 12-pg., 2019-01-01.
Resumo

Component-hypertrees are structures that store nodes of multiple component trees built with increasing neighborhoods, meaning they retain the same desirable properties of component trees but also store nodes from multiple scales, at the cost of increasing time and memory consumption for building, storing and processing the structure. In recent years, algorithmic advances resulted in optimization for both building and storing hypertrees. In this paper, we intend to further extend advances in this field, by presenting algorithms for efficient attribute computation and statistical measures that analyze how attribute values vary when nodes are merged in bigger scales. To validate the efficiency of our method, we present complexity and time consumption analyses, as well as a simple application to show the usefulness of the statistical measurements. (AU)

Processo FAPESP: 18/15652-7 - Segmentação de imagens baseada em restrições de formas por meio dos últimos levelings
Beneficiário:Wonder Alexandre Luz Alves
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/01587-0 - Armazenagem, modelagem e análise de sistemas dinâmicos para aplicações em e-Science
Beneficiário:João Eduardo Ferreira
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Temático