Busca avançada
Ano de início
Entree


Bayesian network models in brain functional connectivity analysis

Texto completo
Autor(es):
Ide, Jaime S. ; Zhang, Sheng ; Li, Chiang-shan R.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING; v. 55, n. 1, p. 13-pg., 2014-01-01.
Resumo

Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and when expert prior knowledge is needed. However, little is done to explore the use of BN in connectivity analysis of fMRI data. In this paper, we present an up-to-date literature review and methodological details of connectivity analyses using BN, while highlighting caveats in a real-world application. We present a BN model of fMRI dataset obtained from sixty healthy subjects performing the stop-signal task (SST), a paradigm widely used to investigate response inhibition. Connectivity results are validated with the extant literature including our previous studies. By exploring the link strength of the learned BNs and correlating them to behavioral performance measures, this novel use of BN in connectivity analysis provides new insights to the functional neural pathways underlying response inhibition. (C) 2013 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 11/08573-4 - Análise de conectividade funcional em pacientes com epilepsia farmacorresistente submetidos à cirurgia de epilepsia
Beneficiário:Jaime Shinsuke Ide
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores